Abstract
In biology, it is often critical to determine the identity of an organism and phenotypic traits of interest. Whole-genome sequencing can be useful for this but has limited power for trait prediction. However, we can take advantage of the inherent information content of phenotypes to bypass these limitations. We demonstrate, in clinical and environmental bacterial isolates, that growth dynamics in standardized conditions can differentiate between genotypes, even among strains from the same species. We find that for pairs of isolates, there is little correlation between genetic distance, according to phylogenetic analysis, and phenotypic distance, as determined by growth dynamics. This absence of correlation underscores the challenge in using genomics to infer phenotypes and vice versa. Bypassing this complexity, we show that growth dynamics alone can robustly predict antibiotic responses. These findings are a foundation for a method to identify traits not easily traced to a genetic mechanism.
Funder
HHS | National Institutes of Health
Shenzhen Peacock Team
DOD | United States Army | RDECOM | Army Research Office
David and Lucile Packard Foundation
HHS | Centers for Disease Control and Prevention
HHS | Agency for Healthcare Research and Quality
National Science Foundation's Graduate Research Fellowship
Publisher
Proceedings of the National Academy of Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献