Primary cilia control glucose homeostasis via islet paracrine interactions

Author:

Hughes Jing W.ORCID,Cho Jung Hoon,Conway Hannah E.,DiGruccio Michael R.,Ng Xue Wen,Roseman Henry F.,Abreu Damien,Urano Fumihiko,Piston David W.

Abstract

Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remain incompletely characterized. We generated mice specifically lacking β-cell primary cilia, a cellular organelle that has been implicated in regulating insulin secretion, and found that the β-cell cilia are required for glucose sensing, calcium influx, insulin secretion, and cross regulation of α- and δ-cells. Protein expression profiling in islets confirms perturbation in these cellular processes and reveals additional targets of cilia-dependent signaling. At the organism level, the deletion of β-cell cilia disrupts circulating hormone levels, impairs glucose homeostasis and fuel usage, and leads to the development of diabetes. Together, these findings demonstrate that primary cilia not only orchestrate β-cell–intrinsic activity but also mediate cross talk both within the islet and from islets to other metabolic tissues, thus providing a unique role of cilia in nutrient metabolism and insight into the pathophysiology of diabetes.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3