Nonlinear trends in abundance and diversity and complex responses to climate change in Arctic arthropods

Author:

Høye Toke T.ORCID,Loboda SarahORCID,Koltz Amanda M.ORCID,Gillespie Mark A. K.ORCID,Bowden Joseph J.ORCID,Schmidt Niels M.ORCID

Abstract

Time series data on arthropod populations are critical for understanding the magnitude, direction, and drivers of change. However, most arthropod monitoring programs are short-lived and restricted in taxonomic resolution. Monitoring data from the Arctic are especially underrepresented, yet critical to uncovering and understanding some of the earliest biological responses to rapid environmental change. Clear imprints of climate on the behavior and life history of some Arctic arthropods have been demonstrated, but a synthesis of population-level abundance changes across taxa is lacking. We utilized 24 y of abundance data from Zackenberg in High-Arctic Greenland to assess trends in abundance and diversity and identify potential climatic drivers of abundance changes. Unlike findings from temperate systems, we found a nonlinear pattern, with total arthropod abundance gradually declining during 1996 to 2014, followed by a sharp increase. Family-level diversity showed the opposite pattern, suggesting increasing dominance of a small number of taxa. Total abundance masked more complicated trajectories of family-level abundance, which also frequently varied among habitats. Contrary to expectation in this extreme polar environment, winter and fall conditions and positive density-dependent feedbacks were more common determinants of arthropod dynamics than summer temperature. Together, these data highlight the complexity of characterizing climate change responses even in relatively simple Arctic food webs. Our results underscore the need for data reporting beyond overall trends in biomass or abundance and for including basic research on life history and ecology to achieve a more nuanced understanding of the sensitivity of Arctic and other arthropods to global changes.

Funder

Natur og Univers, Det Frie Forskningsråd

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3