Massively parallel classical logic via coherent dynamics of an ensemble of quantum systems with dispersion in size

Author:

Gattuso Hugo,Levine R. D.ORCID,Remacle F.

Abstract

Quantum parallelism can be implemented on a classical ensemble of discrete level quantum systems. The nanosystems are not quite identical, and the ensemble represents their individual variability. An underlying Lie algebraic theory is developed using the closure of the algebra to demonstrate the parallel information processing at the level of the ensemble. The ensemble is addressed by a sequence of laser pulses. In the Heisenberg picture of quantum dynamics the coherence between theNlevels of a given quantum system can be handled as an observable. Thereby there areN2logic variables perNlevel system. This is how massive parallelism is achieved in that there areN2potential outputs for a quantum system ofNlevels. The use of an ensemble allows simultaneous reading of such outputs. Due to size dispersion the expectation values of the observables can differ somewhat from system to system. We show that for a moderate variability of the systems one can average theN2expectation values over the ensemble while retaining closure and parallelism. This allows directly propagating in time the ensemble averaged values of the observables. Results of simulations of electronic excitonic dynamics in an ensemble of quantum dot (QD) dimers are presented. The QD size and interdot distance in the dimer are used to parametrize the Hamiltonian. The dimerNlevels include local and charge transfer excitons within each dimer. The well-studied physics of semiconducting QDs suggests that the dimer coherences can be probed at room temperature.

Funder

EC FET_Open COPAC

Fonds De La Recherche Scientifique - FNRS

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference54 articles.

1. A survey on quantum computing technology;Gyongyosi;Comput. Sci. Rev.,2019

2. National Academies of Sciences, Engineering, and Medicine , Quantum Computing: Progress and Prospects, E. Grumbling , M. Horowitz , Eds. (The National Academies Press, Washington, DC, 2019), p. 272.

3. Quantum principal component analysis

4. Quantum computational finance: Monte Carlo pricing of financial derivatives;Rebentrost;Phys. Rev. A (Coll. Park),2018

5. Quantum machine learning for electronic structure calculations;Xia;Nat. Commun.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3