Seasonality and uncertainty in global COVID-19 growth rates

Author:

Merow Cory,Urban Mark C.ORCID

Abstract

The virus causing COVID-19 has spread rapidly worldwide and threatens millions of lives. It remains unknown, as of April 2020, whether summer weather will reduce its spread, thereby alleviating strains on hospitals and providing time for vaccine development. Early insights from laboratory studies and research on related viruses predicted that COVID-19 would decline with higher temperatures, humidity, and ultraviolet (UV) light. Using current, fine-scaled weather data and global reports of infections, we develop a model that explains 36% of the variation in maximum COVID-19 growth rates based on weather and demography (17%) and country-specific effects (19%). UV light is most strongly associated with lower COVID-19 growth. Projections suggest that, without intervention, COVID-19 will decrease temporarily during summer, rebound by autumn, and peak next winter. Validation based on data from May and June 2020 confirms the generality of the climate signal detected. However, uncertainty remains high, and the probability of weekly doubling rates remains >20% throughout summer in the absence of social interventions. Consequently, aggressive interventions will likely be needed despite seasonal trends.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference44 articles.

1. World Health Organization , “Coronavirus disease 2019 (COVID-19)” (Situation Rep. 67, World Health Organization, 2020).

2. M. T. P. Coelho ., Exponential phase of covid19 expansion is not driven by climate at global scale. medRxiv:10.1101/2020.04.02.20050773 (6 May 2020).

3. An interactive web-based dashboard to track COVID-19 in real time

4. N. Ferguson ., “Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand” (Rep. 9, Imperial College London, 2020).

5. National Academies of Sciences , “Medicine, rapid expert consultation on SARS-CoV-2 survival in relation to temperature and humidity and potential for seasonality for the COVID-19 pandemic (April 7, 2020)” (Report, The National Academies Press, Washington, DC, 2020).

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3