Michler’s hydrol blue elucidates structural differences in prion strains

Author:

Xiao YilingORCID,Rocha SandraORCID,Kitts Catherine C.,Reymer Anna,Beke-Somfai TamásORCID,Frederick Kendra K.ORCID,Nordén Bengt

Abstract

Yeast prions provide self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that confer distinct phenotypes when introduced into cells that do not carry the prion. Classic dyes, such as thioflavin T and Congo red, exhibit large increases in fluorescence when bound to amyloids, but these dyes are not sensitive to local structural differences that distinguish amyloid strains. Here we describe the use of Michler’s hydrol blue (MHB) to investigate fibrils formed by the weak and strong prion fibrils of Sup35NM and find that MHB differentiates between these two polymorphs. Quantum mechanical time-dependent density functional theory (TDDFT) calculations indicate that the fluorescence properties of amyloid-bound MHB can be correlated to the change of binding site polarity and that a tyrosine to phenylalanine substitution at a binding site could be detected. Through the use of site-specific mutants, we demonstrate that MHB is a site-specific environmentally sensitive probe that can provide structural details about amyloid fibrils and their polymorphs.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3