Facultative protein selenation regulates redox sensitivity, adipose tissue thermogenesis, and obesity

Author:

Jedrychowski Mark P.,Lu Gina Z.,Szpyt John,Mariotti Marco,Garrity Ryan,Paulo Joao A.,Schweppe Devin K.,Laznik-Bogoslavski Dina,Kazak LawrenceORCID,Murphy Michael P.,Gladyshev Vadim N.,Gygi Steven P.,Chouchani Edward T.,Spiegelman Bruce M.

Abstract

Oxidation of cysteine thiols by physiological reactive oxygen species (ROS) initiates thermogenesis in brown and beige adipose tissues. Cellular selenocysteines, where sulfur is replaced with selenium, exhibit enhanced reactivity with ROS. Despite their critical roles in physiology, methods for broad and direct detection of proteogenic selenocysteines are limited. Here we developed a mass spectrometric method to interrogate incorporation of selenium into proteins. Unexpectedly, this approach revealed facultative incorporation of selenium as selenocysteine or selenomethionine into proteins that lack canonical encoding for selenocysteine. Selenium was selectively incorporated into regulatory sites on key metabolic proteins, including as selenocysteine-replacing cysteine at position 253 in uncoupling protein 1 (UCP1). This facultative utilization of selenium was initiated by increasing cellular levels of organic, but not inorganic, forms of selenium. Remarkably, dietary selenium supplementation elevated facultative incorporation into UCP1, elevated energy expenditure through thermogenic adipose tissue, and protected against obesity. Together, these findings reveal the existence of facultative protein selenation, which correlates with impacts on thermogenic adipocyte function and presumably other biological processes as well.

Funder

JPB Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3