Time-reversal symmetry breaking in the Fe-chalcogenide superconductors

Author:

Zaki Nader,Gu Genda,Tsvelik AlexeiORCID,Wu Congjun,Johnson Peter D.

Abstract

Topological superconductivity has been sought in a variety of heterostructure systems, the interest being that a material displaying such a phenomenon could prove to be the ideal platform to support Majorana fermions, which in turn could be the basis for advanced qubit technologies. Recently, the high-Tcfamily of superconductors, FeTe1−xSex, have been shown to exhibit the property of topological superconductivity and further, evidence has been found for the presence of Majorana fermions. We have studied the interplay of topology, magnetism, and superconductivity in the FeTe1−xSexfamily using high-resolution laser-based photoemission. At the bulk superconducting transition, a gap opens at the chemical potential as expected. However, a second gap is observed to open at the Dirac point in the topological surface state. The associated mass acquisition in the topological state points to time-reversal symmetry breaking, probably associated with the formation of ferromagnetism in the surface layer. The presence of intrinsic ferromagnetism combined with strong spin–orbit coupling provides an ideal platform for a range of exotic topological phenomena.

Funder

U.S. Department of Energy

DOD | USAF | AFMC | Air Force Office of Scientific Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3