Functional stability of water wire–carbonyl interactions in an ion channel

Author:

Paulino Joana,Yi MyunggiORCID,Hung IvanORCID,Gan Zhehong,Wang Xiaoling,Chekmenev Eduard Y.ORCID,Zhou Huan-Xiang,Cross Timothy A.ORCID

Abstract

Water wires are critical for the functioning of many membrane proteins, as in channels that conduct water, protons, and other ions. Here, in liquid crystalline lipid bilayers under symmetric environmental conditions, the selective hydrogen bonding interactions between eight waters comprising a water wire and a subset of 26 carbonyl oxygens lining the antiparallel dimeric gramicidin A channel are characterized by17O NMR spectroscopy at 35.2 T (or 1,500 MHz for1H) and computational studies. While backbone15N spectra clearly indicate structural symmetry between the two subunits, single site17O labels of the pore-lining carbonyls report two resonances, implying a break in dimer symmetry caused by the selective interactions with the water wire. The17O shifts document selective water hydrogen bonding with carbonyl oxygens that are stable on the millisecond timescale. Such interactions are supported by density functional theory calculations on snapshots taken from molecular dynamics simulations. Water hydrogen bonding in the pore is restricted to just three simultaneous interactions, unlike bulk water environs. The stability of the water wire orientation and its electric dipole leads to opposite charge-dipole interactions for K+ions bound at the two ends of the pore, thereby providing a simple explanation for an ∼20-fold difference in K+affinity between two binding sites that are ∼24 Å apart. The17O NMR spectroscopy reported here represents a breakthrough in high field NMR technology that will have applications throughout molecular biophysics, because of the acute sensitivity of the17O nucleus to its chemical environment.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

NSF | MPS | Division of Materials Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3