Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution

Author:

Slater Graham J.

Abstract

A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein–Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference68 articles.

1. Schluter D (2000) The Ecology of Adaptive Radiation (Oxford Univ Press, Oxford)

2. Simpson GG (1944) Tempo and Mode of Evolution (Columbia Univ Press, New York)

3. Simpson GG (1953) Major Features of Evolution (Columbia Univ Press, New York)

4. Westoll TS (1949) On the evolution of the Dipnoi. Genetics, Paleontology, and Evolution, eds Jepsen GL Simpson GG Mayr E (Princeton Univ Press, Princeton), pp 121–184

5. Gould SJ (1989) Wonderful Life (W. W. Norton, New York)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3