Author:
Zhang J. L.,Zhang S. J.,Weng H. M.,Zhang W.,Yang L. X.,Liu Q. Q.,Feng S. M.,Wang X. C.,Yu R. C.,Cao L. Z.,Wang L.,Yang W. G.,Liu H. Z.,Zhao W. Y.,Zhang S. C.,Dai X.,Fang Z.,Jin C. Q.
Abstract
We report a successful observation of pressure-induced superconductivity in a topological compound Bi2Te3 with Tc of ∼3 K between 3 to 6 GPa. The combined high-pressure structure investigations with synchrotron radiation indicated that the superconductivity occurred at the ambient phase without crystal structure phase transition. The Hall effects measurements indicated the hole-type carrier in the pressure-induced superconducting Bi2Te3 single crystal. Consequently, the first-principles calculations based on the structural data obtained by the Rietveld refinement of X-ray diffraction patterns at high pressure showed that the electronic structure under pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi2Te3 due to the proximity effect between superconducting bulk states and Dirac-type surface states. We also discuss the possibility that the bulk state could be a topological superconductor.
Publisher
Proceedings of the National Academy of Sciences
Cited by
295 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献