Ligand effects on phase separation of multivalent macromolecules

Author:

Ruff Kiersten M.,Dar Furqan,Pappu Rohit V.ORCID

Abstract

Biomolecular condensates enable spatial and temporal control over cellular processes by concentrating biomolecules into nonstoichiometric assemblies. Many condensates form via reversible phase transitions of condensate-specific multivalent macromolecules known as scaffolds. Phase transitions of scaffolds can be regulated by changing the concentrations of ligands, which are defined as nonscaffold molecules that bind to specific sites on scaffolds. Here, we use theory and computation to uncover rules that underlie ligand-mediated control over scaffold phase behavior. We use the stickers-and-spacers model wherein reversible noncovalent cross-links among stickers drive phase transitions of scaffolds, and spacers modulate the driving forces for phase transitions. We find that the modulatory effects of ligands are governed by the valence of ligands, whether they bind directly to stickers versus spacers, and the relative affinities of ligand–scaffold versus scaffold–scaffold interactions. In general, all ligands have a diluting effect on the concentration of scaffolds within condensates. Whereas monovalent ligands destabilize condensates, multivalent ligands can stabilize condensates by binding directly to spacers or destabilize condensates by binding directly to stickers. Bipartite ligands that bind to stickers and spacers can alter the structural organization of scaffold molecules within condensates even when they have a null effect on condensate stability. Our work highlights the importance of measuring dilute phase concentrations of scaffolds as a function of ligand concentration in cells. This can reveal whether ligands modulate scaffold phase behavior by enabling or suppressing phase separation at endogenous levels, thereby regulating the formation and dissolution of condensates in vivo.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3