Constitutive relationship and governing physical properties for magnetophoresis

Author:

Ayansiji Ayankola O.,Dighe Anish V.ORCID,Linninger Andreas A.,Singh Meenesh R.ORCID

Abstract

Magnetophoresis is an important physical process with application to drug delivery, biomedical imaging, separation, and mixing. Other than empirically, little is known about how the magnetic field and magnetic properties of a solution affect the flux of magnetic particles. A comprehensive explanation of these effects on the transport of magnetic particles has not been developed yet. Here we formulate a consistent, constitutive equation for the magnetophoretic flux of magnetic nanoparticles suspended in a medium exposed to a stationary magnetic field. The constitutive relationship accounts for contributions from magnetic diffusion, magnetic convection, residual magnetization, and electromagnetic drift. We discovered that the key physical properties governing the magnetophoresis are magnetic diffusion coefficient, magnetic velocity, and activity coefficient, which depend on relative magnetic energy and the molar magnetic susceptibility of particles. The constitutive equation also reveals previously unknown ballistic and diffusive limits for magnetophoresis wherein the paramagnetic particles either aggregate near the magnet or diffusive away from the magnet, respectively. In the diffusive limit, the particle concentration is linearly proportional to the relative magnetic energy of the suspension of paramagnetic particles. The region of the localization of paramagnetic particles near the magnet decreases with increasing the strength of the magnet. The dynamic accumulation of nanoparticles, measured as the thickness of the nanoparticle aggregate, near the magnet compares well with the theoretical prediction. The effect of convective mixing on the rate of magnetophoresis is also discussed for the magnetic targeting applications.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3