A majority ofRhodobacter sphaeroidespromoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation

Author:

Henry Kemardo K.ORCID,Ross WilmaORCID,Myers Kevin S.ORCID,Lemmer Kimberly C.,Vera Jessica M.,Landick RobertORCID,Donohue Timothy J.ORCID,Gourse Richard L.

Abstract

Using an in vitro transcription system with purified RNA polymerase (RNAP) to investigate rRNA synthesis in the photoheterotrophic α-proteobacteriumRhodobacter sphaeroides, we identified a surprising feature of promoters recognized by the major holoenzyme. Transcription fromR. sphaeroidesrRNA promoters was unexpectedly weak, correlating with absence of −7T, the very highly conserved thymine found at the last position in −10 elements of promoters in most bacterial species. Thymine substitutions for adenine at position −7 in the three rRNA promoters strongly increased intrinsic promoter activity, indicating thatR. sphaeroidesRNAP can utilize −7T when present. rRNA promoters were activated by purifiedR. sphaeroidesCarD, a transcription factor found in many bacterial species but not in β- and γ-proteobacteria. Overall, CarD increased the activity of 15 of 16 nativeR. sphaeroidespromoters tested in vitro that lacked −7T, whereas it had no effect on three of the four native promoters that contained −7T. Genome-wide bioinformatic analysis of promoters fromR. sphaeroidesand two other α-proteobacterial species indicated that 30 to 43% contained −7T, whereas 90 to 99% of promoters from non–α-proteobacteria contained −7T. Thus, promoters lacking −7T appear to be widespread in α-proteobacteria and may have evolved away from consensus to enable their coordinated regulation by transcription factors like CarD. We observed a strong reduction inR. sphaeroidesCarD levels when cells enter stationary phase, suggesting that reduced activation by CarD may contribute to inhibition of rRNA transcription when cells enter stationary phase, the stage of growth when bacterial ribosome synthesis declines.

Funder

NIH GMS

DOE Office of Biological and Environmental Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3