ssRNA phage penetration triggers detachment of the F-pilus

Author:

Harb LaithORCID,Chamakura KarthikORCID,Khara Pratick,Christie Peter J.,Young RyORCID,Zeng LanyingORCID

Abstract

Although the F-specific ssRNA phage MS2 has long had paradigm status, little is known about penetration of the genomic RNA (gRNA) into the cell. The phage initially binds to the F-pilus using its maturation protein (Mat), and then the Mat-bound gRNA is released from the viral capsid and somehow crosses the bacterial envelope into the cytoplasm. To address the mechanics of this process, we fluorescently labeled the ssRNA phage MS2 to track F-pilus dynamics during infection. We discovered that ssRNA phage infection triggers the release of F-pili from host cells, and that higher multiplicity of infection (MOI) correlates with detachment of longer F-pili. We also report that entry of gRNA into the host cytoplasm requires the F-plasmid–encoded coupling protein, TraD, which is located at the cytoplasmic entrance of the F-encoded type IV secretion system (T4SS). However, TraD is not essential for pilus detachment, indicating that detachment is triggered by an early step of MS2 engagement with the F-pilus or T4SS. We propose a multistep model in which the ssRNA phage binds to the F-pilus and through pilus retraction engages with the distal end of the T4SS channel at the cell surface. Continued pilus retraction pulls the Mat-gRNA complex out of the virion into the T4SS channel, causing a torsional stress that breaks the mature F-pilus at the cell surface. We propose that phage-induced disruptions of F-pilus dynamics provides a selective advantage for infecting phages and thus may be prevalent among the phages specific for retractile pili.

Funder

National Science Foundation

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3