Mono- and bilayer smectic liquid crystal ordering in dense solutions of “gapped” DNA duplexes

Author:

Gyawali PrabeshORCID,Saha RonyORCID,Smith Gregory P.ORCID,Salamonczyk MiroslawORCID,Kharel PrakashORCID,Basu Soumitra,Li Ruipeng,Fukuto Masafumi,Gleeson James T.,Clark Noel A.,Jákli AntalORCID,Balci HamzaORCID,Sprunt Samuel

Abstract

Although its mesomorphic properties have been studied for many years, only recently has the molecule of life begun to reveal the true range of its rich liquid crystalline behavior. End-to-end interactions between concentrated, ultrashort DNA duplexes—driving the self-assembly of aggregates that organize into liquid crystal phases—and the incorporation of flexible single-stranded “gaps” in otherwise fully paired duplexes—producing clear evidence of an elementary lamellar (smectic-A) phase in DNA solutions—are two exciting developments that have opened avenues for discovery. Here, we report on a wider investigation of the nature and temperature dependence of smectic ordering in concentrated solutions of various “gapped” DNA (GDNA) constructs. We examine symmetric GDNA constructs consisting of two 48-base pair duplex segments bridged by a single-stranded sequence of 2 to 20 thymine bases. Two distinct smectic layer structures are observed for DNA concentration in the range 230to280 mg/mL. One exhibits an interlayer periodicity comparable with two-duplex lengths (“bilayer” structure), and the other has a period similar to a single-duplex length (“monolayer” structure). The bilayer structure is observed for gap length ≳10 bases and melts into the cholesteric phase at a temperature between 30 °C and 35 °C. The monolayer structure predominates for gap length ≲10 bases and persists to >40°C. We discuss models for the two layer structures and mechanisms for their stability. We also report results for asymmetric gapped constructs and for constructs with terminal overhangs, which further support the model layer structures.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3