A direct link between active matter and sheared granular systems

Author:

Morse Peter K.ORCID,Roy SudeshnaORCID,Agoritsas ElisabethORCID,Stanifer Ethan,Corwin Eric I.ORCID,Manning M. LisaORCID

Abstract

The similarity in mechanical properties of dense active matter and sheared amorphous solids has been noted in recent years without a rigorous examination of the underlying mechanism. We develop a mean-field model that predicts that their critical behavior—as measured by their avalanche statistics—should be equivalent in infinite dimensions up to a rescaling factor that depends on the correlation length of the applied field. We test these predictions in two dimensions using a numerical protocol, termed “athermal quasistatic random displacement,” and find that these mean-field predictions are surprisingly accurate in low dimensions. We identify a general class of perturbations that smoothly interpolates between the uncorrelated localized forces that occur in the high-persistence limit of dense active matter and system-spanning correlated displacements that occur under applied shear. These results suggest a universal framework for predicting flow, deformation, and failure in active and sheared disordered materials.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The yielding of granular matter is marginally stable and critical;Proceedings of the National Academy of Sciences;2024-08-08

2. Thinning by cluster breaking: Active matter and shear flows share thinning mechanisms;Proceedings of the National Academy of Sciences;2024-06-06

3. Dynamics and fluctuations of minimally structured glass formers;Physical Review E;2024-05-23

4. Short-range correlation of stress chains near solid-to-liquid transition in active monolayers;Journal of The Royal Society Interface;2024-05

5. Active jamming at criticality;Physical Review Research;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3