Kinetic description of site ensembles on catalytic surfaces

Author:

Razdan Neil K.ORCID,Bhan AdityaORCID

Abstract

We demonstrate that the Langmuir–Hinshelwood formalism is an incomplete kinetic description and, in particular, that the Hinshelwood assumption (i.e., that adsorbates are randomly distributed on the surface) is inappropriate even in catalytic reactions as simple as A + A → A2. The Hinshelwood assumption results in miscounting of site pairs (e.g., A*–A*) and, consequently, in erroneous rates, reaction orders, and identification of rate-determining steps. The clustering and isolation of surface species unnoticed by the Langmuir–Hinshelwood model is rigorously accounted for by derivation of higher-order rate terms containing statistical factors specific to each site ensemble. Ensemble-specific statistical rate terms arise irrespective of and couple with lateral adsorbate interactions, are distinct for each elementary step including surface diffusion events (e.g., A* + * → * + A*), and provide physical insight obscured by the nonanalytical nature of the kinetic Monte Carlo (kMC) method—with which the higher-order formalism quantitatively agrees. The limitations of the Langmuir–Hinshelwood model are attributed to the incorrect assertion that the rate of an elementary step is the same with respect to each site ensemble. In actuality, each elementary step—including adsorbate diffusion—traverses through each ensemble with unique rate, reversibility, and kinetic-relevance to the overall reaction rate. Explicit kinetic description of ensemble-specific paths is key to the improvements of the higher-order formalism; enables quantification of ensemble-specific rate, reversibility, and degree of rate control of surface diffusion; and reveals that a single elementary step can, counter intuitively, be both equilibrated and rate determining.

Funder

U.S. Department of Energy

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3