Abstract
2H magnetic resonance spectroscopic imaging has been shown recently to be a viable technique for metabolic imaging in the clinic. We show here that 2H MR spectroscopy and spectroscopic imaging measurements of [2,3-2H2]malate production from [2,3-2H2]fumarate can be used to detect tumor cell death in vivo via the production of labeled malate. Production of [2,3-2H2]malate, following injection of [2,3-2H2]fumarate (1 g/kg) into tumor-bearing mice, was measured in a murine lymphoma (EL4) treated with etoposide, and in human breast (MDA-MB-231) and colorectal (Colo205) xenografts treated with a TRAILR2 agonist, using surface-coil localized 2H MR spectroscopy at 7 T. Malate production was also imaged in EL4 tumors using a fast 2H chemical shift imaging sequence. The malate/fumarate ratio increased from 0.016 ± 0.02 to 0.16 ± 0.14 in EL4 tumors 48 h after drug treatment (P = 0.0024, n = 3), and from 0.019 ± 0.03 to 0.25 ± 0.23 in MDA-MB-231 tumors (P = 0.0001, n = 5) and from 0.016 ± 0.04 to 0.28 ± 0.26 in Colo205 tumors (P = 0.0002, n = 5) 24 h after drug treatment. These increases were correlated with increased levels of cell death measured in excised tumor sections obtained immediately after imaging. 2H MR measurements of [2,3-2H2]malate production from [2,3-2H2]fumarate provide a potentially less expensive and more sensitive method for detecting cell death in vivo than 13C MR measurements of hyperpolarized [1,4-13C2]fumarate metabolism, which have been used previously for this purpose.
Funder
Cancer Research UK
Cambridge Commonwealth, European and International Trust
Publisher
Proceedings of the National Academy of Sciences
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献