Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are lipid-associated luminal secretory cargoes selectively sorted to the apical surface of the epithelia where they reside and play diverse vital functions. Cholesterol-dependent clustering of GPI-APs in the Golgi is the key step driving their apical sorting and their further plasma membrane organization and activity; however, the specific machinery involved in this Golgi event is still poorly understood. In this study, we show that the formation of GPI-AP homoclusters (made of single GPI-AP species) in the Golgi relies directly on the levels of calcium within cisternae. We further demonstrate that the TGN calcium/manganese pump, SPCA1, which regulates the calcium concentration within the Golgi, and Cab45, a calcium-binding luminal Golgi resident protein, are essential for the formation of GPI-AP homoclusters in the Golgi and for their subsequent apical sorting. Down-regulation of SPCA1 or Cab45 in polarized epithelial cells impairs the oligomerization of GPI-APs in the Golgi complex and leads to their missorting to the basolateral surface. Overall, our data reveal an unexpected role for calcium in the mechanism of GPI-AP apical sorting in polarized epithelial cells and identify the molecular machinery involved in the clustering of GPI-APs in the Golgi.
Funder
Agence Nationale de la Recherche
Fondation pour la Recherche Médicale
Fondazione Telethon
Associazione Italiana per la Ricerca sul Cancro
Publisher
Proceedings of the National Academy of Sciences
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献