A backward-spinning star with two coplanar planets

Author:

Hjorth Maria,Albrecht SimonORCID,Hirano Teruyuki,Winn Joshua N.,Dawson Rebekah I.ORCID,Zanazzi J. J.ORCID,Knudstrup EmilORCID,Sato Bun’ei

Abstract

It is widely assumed that a star and its protoplanetary disk are initially aligned, with the stellar equator parallel to the disk plane. When observations reveal a misalignment between stellar rotation and the orbital motion of a planet, the usual interpretation is that the initial alignment was upset by gravitational perturbations that took place after planet formation. Most of the previously known misalignments involve isolated hot Jupiters, for which planet–planet scattering or secular effects from a wider-orbiting planet are the leading explanations. In theory, star/disk misalignments can result from turbulence during star formation or the gravitational torque of a wide-orbiting companion star, but no definite examples of this scenario are known. An ideal example would combine a coplanar system of multiple planets—ruling out planet–planet scattering or other disruptive postformation events—with a backward-rotating star, a condition that is easier to obtain from a primordial misalignment than from postformation perturbations. There are two previously known examples of a misaligned star in a coplanar multiplanet system, but in neither case has a suitable companion star been identified, nor is the stellar rotation known to be retrograde. Here, we show that the star K2-290 A is tilted by 124±6 compared with the orbits of both of its known planets and has a wide-orbiting stellar companion that is capable of having tilted the protoplanetary disk. The system provides the clearest demonstration that stars and protoplanetary disks can become grossly misaligned due to the gravitational torque from a neighboring star.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aligning Planet-hosting Binaries via Dissipative Precession in Circumstellar Disks;The Astrophysical Journal;2024-09-01

2. Evidence for Primordial Alignment: Insights from Stellar Obliquity Measurements for Compact Sub-Saturn Systems;The Astronomical Journal;2024-08-13

3. HD 110067 c has an aligned orbit;Astronomy & Astrophysics;2024-06-24

4. The SNR of idealized radial velocity signals;Monthly Notices of the Royal Astronomical Society;2024-06-19

5. On the origin of polar planets around single stars;Monthly Notices of the Royal Astronomical Society: Letters;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3