Abstract
Drosophila melanogasterfemales experience a large shift in energy homeostasis after mating to compensate for nutrient investment in egg production. To cope with this change in metabolism, mated females undergo widespread physiological and behavioral changes, including increased food intake and altered digestive processes. The mechanisms by which the female digestive system responds to mating remain poorly characterized. Here, we demonstrate that the seminal fluid protein Sex Peptide (SP) is a key modulator of female post-mating midgut growth and gene expression. SP is both necessary and sufficient to trigger post-mating midgut growth in females under normal nutrient conditions, and likely acting via its receptor, Sex Peptide Receptor (SPR). Moreover, SP is responsible for almost the totality of midgut transcriptomic changes following mating, including up-regulation of protein and lipid metabolism genes and down-regulation of carbohydrate metabolism genes. These changes in metabolism may help supply the female with the nutrients required to sustain egg production. Thus, we report a role for SP in altering female physiology to enhance reproductive output: Namely, SP triggers the switch from virgin to mated midgut state.
Funder
HHS | National Institutes of Health
National Science Foundation
College of Agriculture and Life Sciences, Cornell University
Publisher
Proceedings of the National Academy of Sciences
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献