Optical computation of a spin glass dynamics with tunable complexity

Author:

Leonetti M.,Hörmann E.ORCID,Leuzzi L.,Parisi G.ORCID,Ruocco G.ORCID

Abstract

Spin glasses (SGs) are paradigmatic models for physical, computer science, biological, and social systems. The problem of studying the dynamics for SG models is nondetermistic polynomial-time (NP) hard; that is, no algorithm solves it in polynomial time. Here we implement the optical simulation of an SG, exploiting the N segments of a wavefront-shaping device to play the role of the spin variables, combining the interference downstream of a scattering material to implement the random couplings between the spins (the Jij matrix) and measuring the light intensity on a number P of targets to retrieve the energy of the system. By implementing a plain Metropolis algorithm, we are able to simulate the spin model dynamics, while the degree of complexity of the potential energy landscape and the region of phase diagram explored are user defined, acting on the ratio P/N=α. We study experimentally, numerically, and analytically this Hopfield-like system displaying a paramagnetic, ferromagnetic, and SG phase, and we demonstrate that the transition temperature Tg to the glassy phase from the paramagnetic phase grows with α. We demonstrate the computational advantage of the optical SG where interaction terms are realized simultaneously when the independent light rays interfere on the detector’s surface. This inherently parallel measurement of the energy provides a speedup with respect to purely in silico simulations scaling with N.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3