Strong metal–metal Pauli repulsion leads to repulsive metallophilicity in closed-shell d8 and d10 organometallic complexes

Author:

Wan QingyunORCID,Yang JunORCID,To Wai-Pong,Che Chi-MingORCID

Abstract

Metallophilicity is defined as the interaction among closed-shell metal centers, the origin of which remains controversial, particularly for the roles of spd orbital hybridization (mixing of the spd atomic orbitals of the metal atom in the molecular orbitals of metal complex) and the relativistic effect. Our studies reveal that at close M–M′ distances in the X-ray crystal structures of d8 and d10 organometallic complexes, M–M′ closed-shell interactions are repulsive in nature due to strong M–M′ Pauli repulsion. The relativistic effect facilitates (n + 1)s-nd and (n + 1)p-nd orbital hybridization of the metal atom, where (n + 1)s-nd hybridization induces strong M–M′ Pauli repulsion and repulsive M–M′ orbital interaction, and (n + 1)p-nd hybridization suppresses M–M′ Pauli repulsion. This model is validated by both DFT (density functional theory) and high-level coupled-cluster singles and doubles with perturbative triples computations and is used to account for the fact that the intermolecular or intramolecular Ag–Ag′ distance is shorter than the Au–Au′ distance, where a weaker Ag–Ag′ Pauli repulsion plays an important role. The experimental studies verify the importance of ligands in intermolecular interactions. Although the M–M′ interaction is repulsive in nature, the linear coordination geometry of the d10 metal complex suppresses the L–L′ (ligand–ligand) Pauli repulsion while retaining the strength of the attractive L–L′ dispersion, leading to a close unsupported M–M′ distance that is shorter than the sum of the van der Waals radius (rvdw) of the metal atoms.

Funder

Hong Kong Research Grants Council

Basic Research Program-Shenzhen Fund

Major Program of Guangdong Basic and Applied Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3