The critical role of cloud–infrared radiation feedback in tropical cyclone development

Author:

Ruppert James H.ORCID,Wing Allison A.ORCID,Tang XiaodongORCID,Duran Erika L.ORCID

Abstract

The tall clouds that comprise tropical storms, hurricanes, and typhoons—or more generally, tropical cyclones (TCs)—are highly effective at trapping the infrared radiation welling up from the surface. This cloud–infrared radiation feedback, referred to as the “cloud greenhouse effect,” locally warms the lower–middle troposphere relative to a TC’s surroundings through all stages of its life cycle. Here, we show that this effect is essential to promoting and accelerating TC development in the context of two archetypal storms—Super Typhoon Haiyan (2013) and Hurricane Maria (2017). Namely, this feedback strengthens the thermally direct transverse circulation of the developing storm, in turn both promoting saturation within its core and accelerating the spin-up of its surface tangential circulation through angular momentum convergence. This feedback therefore shortens the storm’s gestation period prior to its rapid intensification into a strong hurricane or typhoon. Further research into this subject holds the potential for key progress in TC prediction, which remains a critical societal challenge.

Funder

DOC | NOAA | Climate Program Office

National Science Foundation

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference64 articles.

1. NOAA National Centers for Environmental Information (NCEI) , Billion-dollar weather and climate disasters. https://www.doi.org/10.25921/stkw-7w73. Accessed 12 April 2020.

2. Future economic damage from tropical cyclones: sensitivities to societal and climate changes

3. Coastal flooding by tropical cyclones and sea-level rise

4. Will global warming make hurricane forecasting more difficult?;Emanuel;Bull. Am. Meteorol. Soc.,2017

5. Tropical cyclones and climate change assessment: Part I: Detection and attribution;Knutson;Bull. Am. Meteorol. Soc.,2019

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3