Neural divergence and hybrid disruption between ecologically isolated Heliconius butterflies

Author:

Montgomery Stephen H.ORCID,Rossi Matteo,McMillan W. Owen,Merrill Richard M.ORCID

Abstract

The importance of behavioral evolution during speciation is well established, but we know little about how this is manifest in sensory and neural systems. A handful of studies have linked specific neural changes to divergence in host or mate preferences associated with speciation. However, the degree to which brains are adapted to local environmental conditions, and whether this contributes to reproductive isolation between close relatives that have diverged in ecology, remains unknown. Here, we examine divergence in brain morphology and neural gene expression between closely related, but ecologically distinct, Heliconius butterflies. Despite ongoing gene flow, sympatric species pairs within the melpomene–cydno complex are consistently separated across a gradient of open to closed forest and decreasing light intensity. By generating quantitative neuroanatomical data for 107 butterflies, we show that Heliconius melpomene and Heliconius cydno clades have substantial shifts in brain morphology across their geographic range, with divergent structures clustered in the visual system. These neuroanatomical differences are mirrored by extensive divergence in neural gene expression. Differences in both neural morphology and gene expression are heritable, exceed expected rates of neutral divergence, and result in intermediate traits in first-generation hybrid offspring. Strong evidence of divergent selection implies local adaptation to distinct selective optima in each parental microhabitat, suggesting the intermediate traits of hybrids are poorly matched to either condition. Neural traits may therefore contribute to coincident barriers to gene flow, thereby helping to facilitate speciation.

Funder

Royal Commission for the Exhibition of 1851

Leverhulme Trust

British Ecological Society

RCUK | Natural Environment Research Council

SI | Smithsonian Tropical Research Institute

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference111 articles.

1. Ecological speciation

2. Evidence for Ecological Speciation and Its Alternative

3. J. A. Coyne , H.A. Orr , Speciation (Oxford University Press, Oxford, 2004).

4. 25 years of sensory drive: The evidence and its watery bias;Cummings;Curr. Zool.,2018

5. Sensory Drive, Color, and Color Vision

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3