POU4F3 pioneer activity enables ATOH1 to drive diverse mechanoreceptor differentiation through a feed-forward epigenetic mechanism

Author:

Yu Haoze V.ORCID,Tao LitaoORCID,Llamas Juan,Wang XiziORCID,Nguyen John D.,Trecek Talon,Segil NeilORCID

Abstract

During embryonic development, hierarchical cascades of transcription factors interact with lineage-specific chromatin structures to control the sequential steps in the differentiation of specialized cell types. While examples of transcription factor cascades have been well documented, the mechanisms underlying developmental changes in accessibility of cell type–specific enhancers remain poorly understood. Here, we show that the transcriptional “master regulator” ATOH1—which is necessary for the differentiation of two distinct mechanoreceptor cell types, hair cells in the inner ear and Merkel cells of the epidermis—is unable to access much of its target enhancer network in the progenitor populations of either cell type when it first appears, imposing a block to further differentiation. This block is overcome by a feed-forward mechanism in which ATOH1 first stimulates expression of POU4F3, which subsequently acts as a pioneer factor to provide access to closed ATOH1 enhancers, allowing hair cell and Merkel cell differentiation to proceed. Our analysis also indicates the presence of both shared and divergent ATOH1/POU4F3-dependent enhancer networks in hair cells and Merkel cells. These cells share a deep developmental lineage relationship, deriving from their common epidermal origin, and suggesting that this feed-forward mechanism preceded the evolutionary divergence of these very different mechanoreceptive cell types.

Funder

HHS | NIH | National Institute on Deafness and Other Communication Disorders

Hearing Health Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3