Abstract
Although it is held that proinflammatory changes precede the onset of breast cancer, the underlying mechanisms remain obscure. Here, we demonstrate that FRS2β, an adaptor protein expressed in a small subset of epithelial cells, triggers the proinflammatory changes that induce stroma in premalignant mammary tissues and is responsible for the disease onset. FRS2β deficiency in mouse mammary tumor virus (MMTV)–ErbB2 mice markedly attenuated tumorigenesis. Importantly, tumor cells derived from MMTV-ErbB2 mice failed to generate tumors when grafted in the FRS2β-deficient premalignant tissues. We found that colocalization of FRS2β and the NEMO subunit of the IκB kinase complex in early endosomes led to activation of nuclear factor–κB (NF-κB), a master regulator of inflammation. Moreover, inhibition of the activities of the NF-κB–induced cytokines, CXC chemokine ligand 12 and insulin-like growth factor 1, abrogated tumorigenesis. Human breast cancer tissues that express higher levels of FRS2β contain more stroma. The elucidation of the FRS2β–NF-κB axis uncovers a molecular link between the proinflammatory changes and the disease onset.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Japan Society for the Promotion of Science London
Japan Agency for Medical Research and Development
Publisher
Proceedings of the National Academy of Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献