Affiliation:
1. Chair of Intelligent Maintenance Systems, ETH Zürich, 8049 Zürich, Switzerland
Abstract
Significance
Monitoring of industrial assets often relies on high-frequency (HF) signal measurements. One difficulty of dealing with such measurements in the industrial context is the conciliation between the high-frequency sampling and low-dimensional decision states (e.g., healthy/unhealthy), in a context where, very often, labels are not available. Here, we propose a fully unsupervised deep-learning framework for high-frequency time series that is able to extract meaningful and sparse representation of raw signals and is able to handle different lengths of time series flexibly, overcoming thereby several of the limitations of existing deep-learning approaches. The decomposition framework will be very useful for handling in an automatic manner high-frequency signals and is an important basis for future applications with HF data.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Kommission für Technologie und Innovation
Publisher
Proceedings of the National Academy of Sciences
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献