Prediction of unconventional magnetism in doped FeSb2

Author:

Mazin Igor I.ORCID,Koepernik Klaus,Johannes Michelle D.,González-Hernández Rafael,Šmejkal Libor

Abstract

It is commonly believed that the energy bands of typical collinear antiferromagnets (AFs), which have zero net magnetization, are Kramers spin-degenerate. Kramers nondegeneracy is usually associated with a global time-reversal symmetry breaking (e.g., via ferromagnetism) or with a combination of spin–orbit interaction and broken spatial inversion symmetry. Recently, another type of spin splitting was demonstrated to emerge in some collinear magnets that are fully spin compensated by symmetry, nonrelativistic, and not even necessarily noncentrosymmetric. These materials feature nonzero spin density staggered in real space as seen in traditional AFs but also spin splitting in momentum space, generally seen only in ferromagnets. This results in a combination of materials characteristics typical of both ferromagnets and AFs. Here, we discuss this recently discovered class with application to a well-known semiconductor, FeSb2, and predict that with certain alloying, it becomes magnetic and metallic and features the aforementioned magnetic dualism. The calculated energy bands split antisymmetrically with respect to spin-degenerate nodal surfaces rather than nodal points, as in the case of spin–orbit splitting. The combination of a large (0.2-eV) spin splitting, compensated net magnetization with metallic ground state, and a specific magnetic easy axis generates a large anomalous Hall conductivity (∼150 S/cm) and a sizable magnetooptical Kerr effect, all deemed to be hallmarks of nonzero net magnetization. We identify a large contribution to the anomalous response originating from the spin–orbit interaction gapped anti-Kramers nodal surfaces, a mechanism distinct from the nodal lines and Weyl points in ferromagnets.

Funder

DOE | Office of Science

European Commission

Deutsche Forschungsgemeinschaft

DOD | United States Navy | Office of Naval Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3