Encoding hierarchical assembly pathways of proteins with DNA

Author:

Hayes Oliver G.ORCID,Partridge Benjamin E.ORCID,Mirkin Chad A.ORCID

Abstract

The structural and functional diversity of materials in nature depends on the controlled assembly of discrete building blocks into complex architectures via specific, multistep, hierarchical assembly pathways. Achieving similar complexity in synthetic materials through hierarchical assembly is challenging due to difficulties with defining multiple recognition areas on synthetic building blocks and controlling the sequence through which those recognition sites direct assembly. Here, we show that we can exploit the chemical anisotropy of proteins and the programmability of DNA ligands to deliberately control the hierarchical assembly of protein–DNA materials. Through DNA sequence design, we introduce orthogonal DNA interactions with disparate interaction strengths (“strong” and “weak”) onto specific geometric regions of a model protein, stable protein 1 (Sp1). We show that the spatial encoding of DNA ligands leads to highly directional assembly via strong interactions and that, by design, the first stage of assembly increases the multivalency of weak DNA–DNA interactions that give rise to an emergent second stage of assembly. Furthermore, we demonstrate that judicious DNA design not only directs assembly along a given pathway but can also direct distinct structural outcomes from a single pathway. This combination of protein surface and DNA sequence design allows us to encode the structural and chemical information necessary into building blocks to program their multistep hierarchical assembly. Our findings represent a strategy for controlling the hierarchical assembly of proteins to realize a diverse set of protein–DNA materials by design.

Funder

DOD | United States Navy | Office of Naval Research

DOD | USAF | AFMC | Air Force Office of Scientific Research

National Science Foundation

HHS | NIH | National Cancer Institute

HHS | NIH | NIH Office of the Director

National Resource for Translational and Developmental Proteomics

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3