Electrochemical implications of modulating the solvation shell around redox active organic species in aqueous organic redox flow batteries

Author:

Sharma KritikaORCID,Sankarasubramanian ShrihariORCID,Parrondo Javier,Ramani VijayORCID

Abstract

Organic and organometallic reactants in aqueous electrolytes, being composed of earth-abundant elements, are promising redox active candidates for cost-effective organic redox flow batteries (ORFBs). Various compounds of ferrocene and methyl viologen have been examined as promising redox actives for this application. Herein, we examined the influence of the electrolyte pH and the salt anion on model redox active organic cations, bis((3-trimethylammonio) propyl)- ferrocene dichloride (BTMAP-Fc) and bis(3-trimethylammonio) propyl viologen tetrachloride (BTMAP-Vi), which have exhibited excellent cycling stability and capacity retention at ≥1.00 M concentration [E. S. Beh, et al. ACS Energy Lett. 2, 639–644 (2017)]. We examined the solvation shell around BTMAP-Fc and BTMAP-Vi at acidic and neutral pH with SO42-, Cl, and CH3SO3 counterions and elucidated their impact on cation diffusion coefficient, first electron transfer rate constant, and thereby the electrochemical Thiele modulus. The electrochemical Thiele modulus was found to be exponentially correlated with the solvent reorganizational energy (λ) in both neutral and acidic pH. Thus, λ is proposed as a universal descriptor and selection criteria for organic redox flow battery electrolyte compositions. In the specific case of the BTMAP-Fc/BTMAP-Vi ORFB, low pH electrolytes with methanesulfonate or chloride counterions were identified as offering the best balance of transport and kinetic requirements.

Funder

DOE | Advanced Research Projects Agency - Energy

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference50 articles.

1. US Energy Information Administration , Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2020 (US Energy Information Administration, Washington, DC, 2020).

2. Department of Energy, Funding Opportunity Announcement Advanced Research Projects Agency–Energy (Arpa-E) Integration and Optimization of Novel Ion Conducting Solids (IONICS), Funding Opportunity No. DE-FOA-0001478 (2016).

3. Department of Energy, Funding Opportunity Announcement Advanced Research Projects Agency–Energy (Arpa-E) Duration Addition to Electricity Storage (DAYS), Funding Opportunity No. DE-FOA-0001906 (2017).

4. Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review;Armstrong;Electrochem. Commun.,2018

5. Flow Batteries: Current Status and Trends

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3