Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today

Author:

Resongles EléonoreORCID,Dietze Volker,Green David C.,Harrison Roy M.ORCID,Ochoa-Gonzalez RaquelORCID,Tremper Anja H.,Weiss Dominik J.ORCID

Abstract

Although leaded gasoline was banned at the end of the last century, lead (Pb) remains significantly enriched in airborne particles in large cities. The remobilization of historical Pb deposited in soils from atmospheric removal has been suggested as an important source providing evidence for the hypothetical long-term persistency of lead, and possibly other pollutants, in the urban environment. Here, we present data on Pb isotopic composition in airborne particles collected in London (2014 to 2018), which provide strong support that lead deposited via gasoline combustion still contributes significantly to the lead burden in present-day London. Lead concentration and isotopic signature of airborne particles collected at a heavily trafficked site did not vary significantly over the last decade, suggesting that sources remained unchanged. Lead isotopic composition of airborne particles matches that of road dust and topsoils and can only be explained with a significant contribution (estimate of 32 ± 10 to 43 ± 9% based on a binary mixing model) of Pb from leaded gasoline. The lead isotopes furthermore suggest significant contributions from nonexhaust traffic emissions, even though isotopic signatures of anthropogenic sources are increasingly overlapping. Lead isotopic composition of airborne particles collected at building height shows a similar signature to that collected at street level, suggesting effective mixing of lead within the urban street canyon. Our results have important implications on the persistence of Pb in urban environments and suggest that atmospheric Pb reached a baseline in London that is difficult to decrease further with present policy measures.

Funder

European Commission

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3