Intensity and frequency of extreme novel epidemics

Author:

Marani MarcoORCID,Katul Gabriel G.ORCID,Pan William K.ORCID,Parolari Anthony J.ORCID

Abstract

Observational knowledge of the epidemic intensity, defined as the number of deaths divided by global population and epidemic duration, and of the rate of emergence of infectious disease outbreaks is necessary to test theory and models and to inform public health risk assessment by quantifying the probability of extreme pandemics such as COVID-19. Despite its significance, assembling and analyzing a comprehensive global historical record spanning a variety of diseases remains an unexplored task. A global dataset of historical epidemics from 1600 to present is here compiled and examined using novel statistical methods to estimate the yearly probability of occurrence of extreme epidemics. Historical observations covering four orders of magnitude of epidemic intensity follow a common probability distribution with a slowly decaying power-law tail (generalized Pareto distribution, asymptotic exponent = −0.71). The yearly number of epidemics varies ninefold and shows systematic trends. Yearly occurrence probabilities of extreme epidemics, Py, vary widely: Py of an event with the intensity of the “Spanish influenza” (1918 to 1920) varies between 0.27 and 1.9% from 1600 to present, while its mean recurrence time today is 400 y (95% CI: 332 to 489 y). The slow decay of probability with epidemic intensity implies that extreme epidemics are relatively likely, a property previously undetected due to short observational records and stationary analysis methods. Using recent estimates of the rate of increase in disease emergence from zoonotic reservoirs associated with environmental change, we estimate that the yearly probability of occurrence of extreme epidemics can increase up to threefold in the coming decades.

Funder

Provveditorato for the Public Works of Veneto, Trentino Alto Adige and Friuli Venezia Giulia

NASA

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference29 articles.

1. Stationarity Is Dead: Whither Water Management?

2. Non-stationary extreme value analysis in a changing climate;Cheng;Clim. Change,2014

3. F. Fenner , D. A. Henderson , I. Arita , Z. Jezek , I. D. Ladnyi , “Smallpox and its eradication” in History of International Public Health, vol. 6 (World Health Organization, Geneva, 1988), pp. 1371–1409.

4. The geography and mortality of the 1918 influenza pandemic;Patterson;Bull. Hist. Med.,1991

5. W. McNeill , Plagues and Peoples (Anchor Books, 1998).

Cited by 313 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3