Abstract
Long noncoding RNAs (lncRNAs) are key regulators of gene expression in diverse cellular contexts and biological processes. Given the surprising range of shapes and sizes, how distinct lncRNAs achieve functional specificity remains incompletely understood. Here, we identified a heat shock–inducible lncRNA, Heat, in mouse cells that acts as a transcriptional brake to restrain stress gene expression. Functional characterization reveals that Heat directly binds to heat shock transcription factor 1 (HSF1), thereby targeting stress genes in a trans-acting manner. Intriguingly, Heat is heavily methylated in the form of m6A. Although dispensable for HSF1 binding, Heat methylation is required for silencing stress genes to attenuate heat shock response. Consistently, m6A depletion results in prolonged activation of stress genes. Furthermore, Heat mediates these effects via the nuclear m6A reader YTHDC1, forming a transcriptional silencing complex for stress genes. Our study reveals a crucial role of nuclear epitranscriptome in the transcriptional regulation of heat shock response.
Funder
HHS | NIH | National Institute of General Medical Sciences
Howard Hughes Medical Institute
Publisher
Proceedings of the National Academy of Sciences
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献