De novo determination of near-surface electrostatic potentials by NMR

Author:

Yu BinhanORCID,Pletka Channing C.,Pettitt B. MontgomeryORCID,Iwahara JunjiORCID

Abstract

Electrostatic potentials computed from three-dimensional structures of biomolecules by solving the Poisson–Boltzmann equation are widely used in molecular biophysics, structural biology, and medicinal chemistry. Despite the approximate nature of the Poisson–Boltzmann theory, validation of the computed electrostatic potentials around biological macromolecules is rare and methodologically limited. Here, we present a unique and powerful NMR method that allows for straightforward and extensive comparison with electrostatic models for biomolecules and their complexes. This method utilizes paramagnetic relaxation enhancement arising from analogous cationic and anionic cosolutes whose spatial distributions around biological macromolecules reflect electrostatic potentials. We demonstrate that this NMR method enables de novo determination of near-surface electrostatic potentials for individual protein residues without using any structural information. We applied the method to ubiquitin and the Antp homeodomain–DNA complex. The experimental data agreed well with predictions from the Poisson–Boltzmann theory. Thus, our experimental results clearly support the validity of the theory for these systems. However, our experimental study also illuminates certain weaknesses of the Poisson–Boltzmann theory. For example, we found that the theory predicts stronger dependence of near-surface electrostatic potentials on ionic strength than observed in the experiments. Our data also suggest that conformational flexibility or structural uncertainties may cause large errors in theoretical predictions of electrostatic potentials, particularly for highly charged systems. This NMR-based method permits extensive assessment of near-surface electrostatic potentials for various regions around biological macromolecules and thereby may facilitate improvement of the computational approaches for electrostatic potentials.

Funder

HHS | National Institutes of Health

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3