Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation

Author:

Webster Shanice S.ORCID,Lee Calvin K.,Schmidt William C.ORCID,Wong Gerard C. L.,O’Toole George A.

Abstract

To initiate biofilm formation, it is critical for bacteria to sense a surface and respond precisely to activate downstream components of the biofilm program. Type 4 pili (T4P) and increasing levels of c-di-GMP have been shown to be important for surface sensing and biofilm formation, respectively; however, mechanisms important in modulating the levels of this dinucleotide molecule to define a precise output response are unknown. Here, using macroscopic bulk assays and single-cell tracking analyses of Pseudomonas aeruginosa, we uncover a role of the T4P alignment complex protein, PilO, in modulating the activity of the diguanylate cyclase (DGC) SadC. Two-hybrid and bimolecular fluorescence complementation assays, combined with genetic studies, are consistent with a model whereby PilO interacts with SadC and that the PilO–SadC interaction inhibits SadC’s activity, resulting in decreased biofilm formation and increased motility. Using single-cell tracking, we monitor both the mean c-di-GMP and the variance of this dinucleotide in individual cells. Mutations that increase PilO–SadC interaction modestly, but significantly, decrease both the average and variance in c-di-GMP levels on a cell-by-cell basis, while mutants that disrupt PilO–SadC interaction increase the mean and variance of c-di-GMP levels. This work is consistent with a model wherein P. aeruginosa uses a component of the T4P scaffold to fine-tune the levels of this dinucleotide signal during surface commitment. Finally, given our previous findings linking SadC to the flagellar machinery, we propose that this DGC acts as a bridge to integrate T4P and flagellar-derived input signals during initial surface engagement.

Funder

HHS | National Institutes of Health

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3