Polarized information ecosystems can reorganize social networks via information cascades

Author:

Tokita Christopher K.ORCID,Guess Andrew M.ORCID,Tarnita Corina E.ORCID

Abstract

The precise mechanisms by which the information ecosystem polarizes society remain elusive. Focusing on political sorting in networks, we develop a computational model that examines how social network structure changes when individuals participate in information cascades, evaluate their behavior, and potentially rewire their connections to others as a result. Individuals follow proattitudinal information sources but are more likely to first hear and react to news shared by their social ties and only later evaluate these reactions by direct reference to the coverage of their preferred source. Reactions to news spread through the network via a complex contagion. Following a cascade, individuals who determine that their participation was driven by a subjectively “unimportant” story adjust their social ties to avoid being misled in the future. In our model, this dynamic leads social networks to politically sort when news outlets differentially report on the same topic, even when individuals do not know others’ political identities. Observational follow network data collected on Twitter support this prediction: We find that individuals in more polarized information ecosystems lose cross-ideology social ties at a rate that is higher than predicted by chance. Importantly, our model reveals that these emergent polarized networks are less efficient at diffusing information: Individuals avoid what they believe to be “unimportant” news at the expense of missing out on subjectively “important” news far more frequently. This suggests that “echo chambers”—to the extent that they exist—may not echo so much as silence.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3