Abstract
Dragline silk of golden orb-weaver spiders (Nephilinae) is noted for its unsurpassed toughness, combining extraordinary extensibility and tensile strength, suggesting industrial application as a sustainable biopolymer material. To pinpoint the molecular composition of dragline silk and the roles of its constituents in achieving its mechanical properties, we report a multiomics approach, combining high-quality genome sequencing and assembly, silk gland transcriptomics, and dragline silk proteomics of four Nephilinae spiders. We observed the consistent presence of the MaSp3B spidroin unique to this subfamily as well as several nonspidroin SpiCE proteins. Artificial synthesis and the combination of these components in vitro showed that the multicomponent nature of dragline silk, including MaSp3B and SpiCE, along with MaSp1 and MaSp2, is essential to realize the mechanical properties of spider dragline silk.
Funder
ImPACT Program of the Council for Science, Technology and Innovation
Yamagata Prefectural Government and Tsuruoka City, Japan
Nakatsuji Foresight Foundation
Sumitomo Foundation
The Uehara Memorial Foundation
MEXT | Japan Society for the Promotion of Science
Publisher
Proceedings of the National Academy of Sciences
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献