The Type I interferon antiviral gene program is impaired by lockdown and preserved by caregiving

Author:

Cole Steven W.ORCID,Cacioppo John T.,Cacioppo Stephanie,Bone KyleORCID,Del Rosso Laura A.,Spinner AbigailORCID,Arevalo Jesusa M. G.ORCID,Dizon Thomas P.,Capitanio John P.ORCID

Abstract

Previous research has linked perceived social isolation (loneliness) to reduced antiviral immunity, but the immunologic effects of the objective social isolation imposed by pandemic “shelter in place” (SIP) policies is unknown. We assessed the immunologic impact of SIP by relocating 21 adult male rhesus macaques from 2,000-m2 field cage communities of 70 to 132 other macaques to 2 wk of individual housing in indoor shelters. SIP was associated with 30% to 50% reductions in all circulating immune cell populations (lymphocytes, monocytes, and granulocytes), down-regulation of Type I interferon (IFN) antiviral gene expression, and a relative up-regulation of CD16 classical monocytes. These effects emerged within the first 48 h of SIP, persisted for at least 2 wk, and abated within 4 wk of return to social housing. A subsequent round of SIP in the presence of a novel juvenile macaque showed comparable reductions in circulating immune cell populations but reversal of Type I IFN reductions and classical monocyte increases observed during individual SIP. Analyses of lymph node tissues showed parallel up-regulation of Type I IFN genes and enhanced control of viral gene expression during juvenile-partnered SIP compared to isolated SIP. These results identify a significant adverse effect of SIP social isolation on antiviral immune regulation in both circulating immune cells and lymphoid tissues, and they suggest a potential behavioral strategy for ameliorating gene regulatory impacts (but not immune cell declines) by promoting prosocial engagement during SIP.

Funder

HHS | NIH | National Institute on Aging

HHS | NIH | NIH Office of the Director

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3