Ultrasensitive detection of malignant melanoma using PET molecular imaging probes

Author:

Pyo Ayoung,Kim Dong-Yeon,Kim HeejungORCID,Lim Daejin,Kwon Seong YoungORCID,Kang Sae-Ryung,Kim Hyung-Seok,Bom Hee-Seung,Min Jung-Joon

Abstract

Malignant melanoma has one of the highest mortality rates of any cancer because of its aggressive nature and high metastatic potential. Clinical staging of the disease at the time of diagnosis is very important for the prognosis and outcome of melanoma treatment. In this study, we designed and synthesized the18F-labeled pyridine-based benzamide derivativesN-(2-(dimethylamino)ethyl)-5-[18F]fluoropicolinamide ([18F]DMPY2) andN-(2-(dimethylamino)ethyl)-6-[18F]fluoronicotinamide ([18F]DMPY3) to detect primary and metastatic melanoma at an early stage and evaluated their performance in this task. [18F]DMPY2 and [18F]DMPY3 were synthesized by direct radiofluorination of the bromo precursor, and radiochemical yields were ∼15–20%. Cell uptakes of [18F]DMPY2 and [18F]DMPY3 were >103-fold and 18-fold higher, respectively, in B16F10 (mouse melanoma) cells than in negative control cells. Biodistribution studies revealed strong tumor uptake and retention of [18F]DMPY2 (24.8% injected dose per gram of tissue [ID/g] at 60 min) and [18F]DMPY3 (11.7%ID/g at 60 min) in B16F10 xenografts. MicroPET imaging of both agents demonstrated strong tumoral uptake/retention and rapid washout, resulting in excellent tumor-to-background contrast in B16F10 xenografts. In particular, [18F]DMPY2 clearly visualized almost all metastatic lesions in lung and lymph nodes, with excellent image quality. [18F]DMPY2 demonstrated a significantly higher tumor-to-liver ratio than [18F]fluorodeoxyglucose ([18F]FDG) and the previously reported benzamide tracersN-[2-(diethylamino)-ethyl]-5-[18F]fluoropicolinamide ([18F]P3BZA) andN-[2-(diethylamino)-ethyl]-4-[18F]fluorobenzamide ([18F]FBZA) in B16F10-bearing or SK-MEL-3 (human melanoma)-bearing mice. In conclusion, [18F]DMPY2 might have strong potential for the diagnosis of early stage primary and metastatic melanoma using positron emission tomography (PET).

Funder

National Research Foundation of Korea

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3