Volcanic controls on seawater sulfate over the past 120 million years

Author:

Laakso Thomas A.ORCID,Waldeck AnnaORCID,Macdonald Francis A.,Johnston David

Abstract

Changes in the geological sulfur cycle are inferred from the sulfur isotopic composition of marine barite. The structure of the34S/32S record from the Mesozoic to present, which includes ∼50- and 100-Ma stepwise increases, has been interpreted as the result of microbial isotope effects or abrupt changes to tectonics and associated pyrite burial. Untangling the physical processes that govern the marine sulfur cycle and associated isotopic change is critical to understanding how climate, atmospheric oxygenation, and marine ecology have coevolved over geologic time. Here we demonstrate that the sulfur outgassing associated with emplacement of large igneous provinces can produce the apparent stepwise jumps in the isotopic record when coupled to long-term changes in burial efficiency. The record of large igneous provinces map onto the required outgassing events in our model, with the two largest steps in the sulfur isotope record coinciding with the emplacement of large igneous provinces into volatile-rich sedimentary basins. This solution provides a quantitative picture of the last 120 My of change in the ocean’s largest oxidant reservoir.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3