Abstract
Little is known about the exchange of gaseous nitrogen (N2) with the atmosphere in freshwater systems. Although the exchange of N2, driven by excess or deficiencies relative to saturation values, has little relevance to the atmospheric N2pool due to its large size, it does play an important role in freshwater and marine nitrogen (N) cycling. N-fixation converts N2to ammonia, which can be used by microbes and phytoplankton, while denitrification/anammox effectively removes it by converting oxidized, inorganic N to N2. We examined N2saturation to infer net biological nitrogen processes in 34 lakes across 5° latitude varying in trophic status, mixing regime, and bathymetry. Here, we report that nearly all lakes examined in the upper Midwest (USA) were supersaturated with N2(>85% of samples,n= 248), suggesting lakes are continuously releasing nitrogen to the atmosphere. The traditional paradigm is that freshwaters compensate for N-limitation through N-fixation, but these results indicate that lakes were constantly losing N to the atmosphere via denitrification and/or anammox, suggesting that terrestrial N inputs are needed to balance the internal N cycle.
Publisher
Proceedings of the National Academy of Sciences
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献