Hedgehog signaling is necessary and sufficient to mediate craniofacial plasticity in teleosts

Author:

Navon DinaORCID,Male Ira,Tetrault Emily R.,Aaronson Benjamin,Karlstrom Rolf O.ORCID,Albertson R. CraigORCID

Abstract

Phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes under different environmental conditions, is critical for the origins and maintenance of biodiversity; however, the genetic mechanisms underlying plasticity as well as how variation in those mechanisms can drive evolutionary change remain poorly understood. Here, we examine the cichlid feeding apparatus, an icon of both prodigious evolutionary divergence and adaptive phenotypic plasticity. We first provide a tissue-level mechanism for plasticity in craniofacial shape by measuring rates of bone deposition within functionally salient elements of the feeding apparatus in fishes forced to employ alternate foraging modes. We show that levels and patterns of phenotypic plasticity are distinct among closely related cichlid species, underscoring the evolutionary potential of this trait. Next, we demonstrate that hedgehog (Hh) signaling, which has been implicated in the evolutionary divergence of cichlid feeding architecture, is associated with environmentally induced rates of bone deposition. Finally, to demonstrate that Hh levels are the cause of the plastic response and not simply the consequence of producing more bone, we use transgenic zebrafish in which Hh levels could be experimentally manipulated under different foraging conditions. Notably, we find that the ability to modulate bone deposition rates in different environments is dampened when Hh levels are reduced, whereas the sensitivity of bone deposition to different mechanical demands increases with elevated Hh levels. These data advance a mechanistic understanding of phenotypic plasticity in the teleost feeding apparatus and in doing so contribute key insights into the origins of adaptive morphological radiations.

Funder

NSF | BIO | Division of Integrative Organismal Systems

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3