Abstract
The γδ T cells reside predominantly at barrier sites and play essential roles in immune protection against infection and cancer. Despite recent advances in the development of γδ T cell immunotherapy, our understanding of the basic biology of these cells, including how their numbers are regulated in vivo, remains poor. This is particularly true for tissue-resident γδ T cells. We have identified the β2family of integrins as regulators of γδ T cells. β2-integrin–deficient mice displayed a striking increase in numbers of IL-17–producing Vγ6Vδ1+γδ T cells in the lungs, uterus, and circulation. Thymic development of this population was normal. However, single-cell RNA sequencing revealed the enrichment of genes associated with T cell survival and proliferation specifically in β2-integrin–deficient IL-17+cells compared to their wild-type counterparts. Indeed, β2-integrin–deficient Vγ6+cells from the lungs showed reduced apoptosis ex vivo, suggesting that increased survival contributes to the accumulation of these cells in β2-integrin–deficient tissues. Furthermore, our data revealed an unexpected role for β2integrins in promoting the thymic development of the IFNγ-producing CD27+Vγ4+γδ T cell subset. Together, our data reveal that β2integrins are important regulators of γδ T cell homeostasis, inhibiting the survival of IL-17–producing Vγ6Vδ1+cells and promoting the thymic development of the IFNγ-producing Vγ4+subset. Our study introduces unprecedented mechanisms of control for γδ T cell subsets.
Funder
Arthritis Research UK
Carnegie Trust for the Universities of Scotland
Wellcome
EC | Horizon 2020
Publisher
Proceedings of the National Academy of Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献