Abstract
Targeted degradation approaches such as proteolysis targeting chimeras (PROTACs) offer new ways to address disease through tackling challenging targets and with greater potency, efficacy, and specificity over traditional approaches. However, identification of high-affinity ligands to serve as PROTAC starting points remains challenging. As a complementary approach, we describe a class of molecules termed biological PROTACs (bioPROTACs)—engineered intracellular proteins consisting of a target-binding domain directly fused to an E3 ubiquitin ligase. Using GFP-tagged proteins as model substrates, we show that there is considerable flexibility in both the choice of substrate binders (binding positions, scaffold-class) and the E3 ligases. We then identified a highly effective bioPROTAC against an oncology target, proliferating cell nuclear antigen (PCNA) to elicit rapid and robust PCNA degradation and associated effects on DNA synthesis and cell cycle progression. Overall, bioPROTACs are powerful tools for interrogating degradation approaches, target biology, and potentially for making therapeutic impacts.
Publisher
Proceedings of the National Academy of Sciences
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献