Folate stress induces SLX1- and RAD51-dependent mitotic DNA synthesis at the fragile X locus in human cells

Author:

Garribba LorenzaORCID,Bjerregaard Victoria A.,Gonçalves Dinis Marisa M.ORCID,Özer ÖzgünORCID,Wu Wei,Sakellariou DespoinaORCID,Pena-Diaz JavierORCID,Hickson Ian D.,Liu YingORCID

Abstract

Folate deprivation drives the instability of a group of rare fragile sites (RFSs) characterized by CGG trinucleotide repeat (TNR) sequences. Pathological expansion of the TNR within theFRAXAlocus perturbs DNA replication and is the major causative factor for fragile X syndrome, a sex-linked disorder associated with cognitive impairment. Although folate-sensitive RFSs share many features with common fragile sites (CFSs; which are found in all individuals), they are induced by different stresses and share no sequence similarity. It is known that a pathway (termed MiDAS) is employed to complete the replication of CFSs in early mitosis. This process requires RAD52 and is implicated in generating translocations and copy number changes at CFSs in cancers. However, it is unclear whether RFSs also utilize MiDAS and to what extent the fragility of CFSs and RFSs arises by shared or distinct mechanisms. Here, we demonstrate that MiDAS does occur atFRAXAfollowing folate deprivation but proceeds via a pathway that shows some mechanistic differences from that at CFSs, being dependent on RAD51, SLX1, and POLD3. A failure to complete MiDAS atFRAXAleads to severe locus instability and missegregation in mitosis. We propose that break-induced DNA replication is required for the replication ofFRAXAunder folate stress and define a cellular function for human SLX1. These findings provide insights into how folate deprivation drives instability in the human genome.

Funder

Chinese Scholarship council

European Commission

Dansk Kræftforsknings Fond

Danish council for independent Research

The Nordea Foundation

The Danish National Research Fundation

European Union Horizon 2020

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3