The SrrAB two-component system regulatesStaphylococcus aureuspathogenicity through redox sensitive cysteines

Author:

Tiwari NitijaORCID,López-Redondo Marisa,Miguel-Romero Laura,Kulhankova KatarinaORCID,Cahill Michael P.,Tran Phuong M.ORCID,Kinney Kyle J.ORCID,Kilgore Samuel H.,Al-Tameemi Hassan,Herfst Christine A.,Tuffs Stephen W.ORCID,Kirby John R.,Boyd Jeffery M.ORCID,McCormick John K.ORCID,Salgado-Pabón Wilmara,Marina AlbertoORCID,Schlievert Patrick M.,Fuentes Ernesto J.

Abstract

Staphylococcus aureusinfections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator ofS. aureusvirulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB inS. aureuspathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affectsS. aureusbiofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function duringS. aureusinfection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulateS. aureussurvival and pathogenesis.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Canadian Institutes of Health Research

Ministerio de Economía y Competitividad

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3