Circumspect descent prevails in solving random constraint satisfaction problems

Author:

Alava Mikko,Ardelius John,Aurell Erik,Kaski Petteri,Krishnamurthy Supriya,Orponen Pekka,Seitz Sakari

Abstract

We study the performance of stochastic local search algorithms for random instances of the K-satisfiability (K-SAT) problem. We present a stochastic local search algorithm, ChainSAT, which moves in the energy landscape of a problem instance by never going upwards in energy. ChainSAT is a focused algorithm in the sense that it focuses on variables occurring in unsatisfied clauses. We show by extensive numerical investigations that ChainSAT and other focused algorithms solve large K-SAT instances almost surely in linear time, up to high clause-to-variable ratios α; for example, for K = 4 we observe linear-time performance well beyond the recently postulated clustering and condensation transitions in the solution space. The performance of ChainSAT is a surprise given that by design the algorithm gets trapped into the first local energy minimum it encounters, yet no such minima are encountered. We also study the geometry of the solution space as accessed by stochastic local search algorithms.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference26 articles.

1. Garey MR Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco).

2. Du D Gu J Pardalos P , eds (1997) Satisfiability Problem: Theory and Applicationsm, DIMACS Series in Discrete Mathematics and Theoretical Computer Science (Am Math Soc, Providence RI), Vol 35.

3. Statistical mechanics methods and phase transitions in optimization problems

4. Dubois O Monasson R Selman B Zecchina R , eds (2001) Special Issue on NP-Hardness and Phase Transitions. Theor Comput Sci, 265.

5. Mitchell D Selman B Levesque H (1992) in Proceedings of the 10th National Conference on Artificial Intelligence Hard and Easy Distributions of SAT Problems (AAAI Press, San Jose, CA), pp 459–465, AAAI-92.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3