Author:
Peragine Diana E.,Pokarowski Martha,Mendoza-Viveros Lucia,Swift-Gallant Ashlyn,Cheng Hai-Ying M.,Bentley George E.,Holmes Melissa M.
Abstract
Neuroendocrine mechanisms underlying social inhibition of puberty are not well understood. Here, we use a model exhibiting the most profound case of pubertal suppression among mammals to explore a role for RFamide-related peptide-3 [RFRP-3; mammalian ortholog to gonadotropin-inhibitory hormone (GnIH)] in neuroendocrine control of reproductive development. Naked mole rats (NMRs) live in sizable colonies where breeding is monopolized by two to four dominant animals, and no other members exhibit signs of puberty throughout their lives unless they are removed from the colony. Because of its inhibitory action on the reproductive axis in other vertebrates, we investigated the role of RFRP-3 in social reproductive suppression in NMRs. We report that RFRP-3 immunofluorescence expression patterns and RFRP-3/GnRH cross-talk are largely conserved in the NMR brain, with the exception of the unique presence of RFRP-3 cell bodies in the arcuate nucleus (Arc). Immunofluorescence comparisons revealed that central expression of RFRP-3 is altered by reproductive status, with RFRP-3 immunoreactivity enhanced in the paraventricular nucleus, dorsomedial nucleus, and Arc of reproductively quiescent NMRs. We further observed that exogenous RFRP-3 suppresses gonadal steroidogenesis and mating behavior in NMRs given the opportunity to undergo puberty. Together, our findings establish a role for RFRP-3 in preserving reproductive immaturity, and challenge the view that stimulatory peptides are the ultimate gatekeepers of puberty.
Funder
NSERC
Ontario Ministry of Research and Innovation
Consejo Nacional de Ciencia y Tecnología
Publisher
Proceedings of the National Academy of Sciences
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献